Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO J ; 41(23): e112338, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36254605

RESUMEN

A defining characteristic of mammalian prions is their capacity for self-sustained propagation. Theoretical considerations and experimental evidence suggest that prion propagation is modulated by cell-autonomous and non-autonomous modifiers. Using a novel quantitative phospholipase protection assay (QUIPPER) for high-throughput prion measurements, we performed an arrayed genome-wide RNA interference (RNAi) screen aimed at detecting cellular host-factors that can modify prion propagation. We exposed prion-infected cells in high-density microplates to 35,364 ternary pools of 52,746 siRNAs targeting 17,582 genes representing the majority of the mouse protein-coding transcriptome. We identified 1,191 modulators of prion propagation. While 1,151 modified the expression of both the pathological prion protein, PrPSc , and its cellular counterpart, PrPC , 40 genes selectively affected PrPSc . Of the latter 40 genes, 20 augmented prion production when suppressed. A prominent limiter of prion propagation was the heterogeneous nuclear ribonucleoprotein Hnrnpk. Psammaplysene A (PSA), which binds Hnrnpk, reduced prion levels in cultured cells and protected them from cytotoxicity. PSA also reduced prion levels in infected cerebellar organotypic slices and alleviated locomotor deficits in prion-infected Drosophila melanogaster expressing ovine PrPC . Hence, genome-wide QUIPPER-based perturbations can discover actionable cellular pathways involved in prion propagation. Further, the unexpected identification of a prion-controlling ribonucleoprotein suggests a role for RNA in the generation of infectious prions.


Asunto(s)
Enfermedades por Prión , Priones , Ratones , Animales , Ovinos/genética , Priones/genética , Priones/metabolismo , Drosophila melanogaster/genética , Ribonucleoproteínas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Enfermedades por Prión/genética , Enfermedades por Prión/patología , Mamíferos/genética
2.
PLoS Pathog ; 17(10): e1010013, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34705895

RESUMEN

The cellular prion protein PrPC is necessary for prion replication, and its reduction greatly increases life expectancy in animal models of prion infection. Hence the factors controlling the levels of PrPC may represent therapeutic targets against human prion diseases. Here we performed an arrayed whole-transcriptome RNA interference screen to identify modulators of PrPC expression. We cultured human U251-MG glioblastoma cells in the presence of 64'752 unique siRNAs targeting 21'584 annotated human genes, and measured PrPC using a one-pot fluorescence-resonance energy transfer immunoassay in 51'128 individual microplate wells. This screen yielded 743 candidate regulators of PrPC. When downregulated, 563 of these candidates reduced and 180 enhanced PrPC expression. Recursive candidate attrition through multiple secondary screens yielded 54 novel regulators of PrPC, 9 of which were confirmed by CRISPR interference as robust regulators of PrPC biosynthesis and degradation. The phenotypes of 6 of the 9 candidates were inverted in response to transcriptional activation using CRISPRa. The RNA-binding post-transcriptional repressor Pumilio-1 was identified as a potent limiter of PrPC expression through the degradation of PRNP mRNA. Because of its hypothesis-free design, this comprehensive genetic-perturbation screen delivers an unbiased landscape of the genes regulating PrPC levels in cells, most of which were unanticipated, and some of which may be amenable to pharmacological targeting in the context of antiprion therapies.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas PrPC/biosíntesis , Proteínas de Unión al ARN/metabolismo , Línea Celular , Estudio de Asociación del Genoma Completo , Humanos , Interferencia de ARN
3.
Genes (Basel) ; 11(4)2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32283633

RESUMEN

Protein tandem repeats (TRs) are often associated with immunity-related functions and diseases. Since that last census of protein TRs in 1999, the number of curated proteins increased more than seven-fold and new TR prediction methods were published. TRs appear to be enriched with intrinsic disorder and vice versa. The significance and the biological reasons for this association are unknown. Here, we characterize protein TRs across all kingdoms of life and their overlap with intrinsic disorder in unprecedented detail. Using state-of-the-art prediction methods, we estimate that 50.9% of proteins contain at least one TR, often located at the sequence flanks. Positive linear correlation between the proportion of TRs and the protein length was observed universally, with Eukaryotes in general having more TRs, but when the difference in length is taken into account the difference is quite small. TRs were enriched with disorder-promoting amino acids and were inside intrinsically disordered regions. Many such TRs were homorepeats. Our results support that TRs mostly originate by duplication and are involved in essential functions such as transcription processes, structural organization, electron transport and iron-binding. In viruses, TRs are found in proteins essential for virulence.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Proteínas/química , Proteoma/química , Secuencias Repetidas en Tándem , Animales , Humanos , Conformación Proteica
4.
Brain Pathol ; 29(2): 232-244, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30451334

RESUMEN

The cellular prion protein (PrPC ) is best known for its misfolded disease-causing conformer, PrPSc . Because the availability of PrPC is often limiting for prion propagation, understanding its regulation may point to possible therapeutic targets. We sought to determine to what extent the human microRNAome is involved in modulating PrPC levels through direct or indirect pathways. We probed PrPC protein levels in cells subjected to a genome-wide library encompassing 2019 miRNA mimics using a robust time-resolved fluorescence-resonance screening assay. Screening was performed in three human neuroectodermal cell lines: U-251 MG, CHP-212 and SH-SY5Y. The three screens yielded 17 overlapping high-confidence miRNA mimic hits, 13 of which were found to regulate PrPC biosynthesis directly via binding to the PRNP 3'UTR, thereby inducing transcript degradation. The four remaining hits (miR-124-3p, 192-3p, 299-5p and 376b-3p) did not bind either the 3'UTR or CDS of PRNP, and were therefore deemed indirect regulators of PrPC . Our results show that multiple miRNAs regulate PrPC levels both directly and indirectly. These findings may have profound implications for prion disease pathogenesis and potentially also for their therapy. Furthermore, the possible role of PrPC as a mediator of Aß toxicity suggests that its regulation by miRNAs may also impinge on Alzheimer's disease.


Asunto(s)
Proteínas PrPC/genética , Enfermedades por Prión/genética , Priones/genética , Regiones no Traducidas 3'/genética , Enfermedad de Alzheimer , Línea Celular , Estudio de Asociación del Genoma Completo/métodos , Humanos , MicroARNs/genética , MicroARNs/fisiología , Proteínas PrPC/metabolismo , Proteínas Priónicas/genética , Unión Proteica/genética
5.
Prion ; 9(6): 444-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26634863

RESUMEN

Human genetic prion diseases have invariably been linked to alterations of the prion protein (PrP) gene PRNP. Two sisters died from probable Creutzfeldt-Jakob disease (CJD) in Switzerland within 14 y. At autopsy, both patients had typical spongiform change in their brains accompanied by punctuate deposits of PrP. Biochemical analyses demonstrated proteinase K-resistant PrP. Sequencing of PRNP showed 2 wild-type alleles in both siblings. Retrospectively, clinical data revealed a history of dural transplantation in the initially deceased sister, compatible with a diagnosis of iatrogenic CJD. Clinical and familial histories provided no evidence for potential horizontal transmission. This observation of 2 siblings suffering from CJD without mutations in the PRNP gene suggests potential involvement of non-PRNP genes in prion disease etiology.


Asunto(s)
Síndrome de Creutzfeldt-Jakob/genética , Priones/genética , Adolescente , Femenino , Humanos , Enfermedad Iatrogénica , Mutación , Proteínas Priónicas , Hermanos
6.
Bioinformatics ; 31(18): 3051-3, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25987568

RESUMEN

MOTIVATION: Currently, more than 40 sequence tandem repeat detectors are published, providing heterogeneous, partly complementary, partly conflicting results. RESULTS: We present TRAL, a tandem repeat annotation library that allows running and parsing of various detection outputs, clustering of redundant or overlapping annotations, several statistical frameworks for filtering false positive annotations, and importantly a tandem repeat annotation and refinement module based on circular profile hidden Markov models (cpHMMs). Using TRAL, we evaluated the performance of a multi-step tandem repeat annotation workflow on 547 085 sequences in UniProtKB/Swiss-Prot. The researcher can use these results to predict run-times for specific datasets, and to choose annotation complexity accordingly. AVAILABILITY AND IMPLEMENTATION: TRAL is an open-source Python 3 library and is available, together with documentation and tutorials via http://www.vital-it.ch/software/tral. CONTACT: elke.schaper@isb-sib.ch.


Asunto(s)
Bases de Datos de Proteínas , Bases del Conocimiento , Anotación de Secuencia Molecular , Programas Informáticos , Secuencias Repetidas en Tándem/genética , Secuencia de Aminoácidos , Análisis por Conglomerados , Documentación , Biblioteca de Genes , Humanos , Datos de Secuencia Molecular
7.
Artículo en Inglés | MEDLINE | ID: mdl-25853125

RESUMEN

Tandem repeats (TRs) are frequently observed in genomes across all domains of life. Evidence suggests that some TRs are crucial for proteins with fundamental biological functions and can be associated with virulence, resistance, and infectious/neurodegenerative diseases. Genome-scale systematic studies of TRs have the potential to unveil core mechanisms governing TR evolution and TR roles in shaping genomes. However, TR-related studies are often non-trivial due to heterogeneous and sometimes fast evolving TR regions. In this review, we discuss these intricacies and their consequences. We present our recent contributions to computational and statistical approaches for TR significance testing, sequence profile-based TR annotation, TR-aware sequence alignment, phylogenetic analyses of TR unit number and order, and TR benchmarks. Importantly, all these methods explicitly rely on the evolutionary definition of a tandem repeat as a sequence of adjacent repeat units stemming from a common ancestor. The discussed work has a focus on protein TRs, yet is generally applicable to nucleic acid TRs, sharing similar features.

8.
New Phytol ; 206(1): 397-410, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25420631

RESUMEN

Sequence tandem repeats (TRs) are abundant in proteomes across all domains of life. For plants, little is known about their distribution or contribution to protein function. We exhaustively annotated TRs and studied the evolution of TR unit variations for all Ensembl plants. Using phylogenetic patterns of TR units, we detected conserved TRs with unit number and order preserved during evolution, and those TRs that have diverged via recent TR unit gains/losses. We correlated the mode of evolution of TRs to protein function. TR number was strongly correlated with proteome size, with about one-half of all TRs recognized as common protein domains. The majority of TRs have been highly conserved over long evolutionary distances, some since the separation of red algae and green plants c. 1.6 billion yr ago. Conversely, recurrent recent TR unit mutations were rare. Our results suggest that the first TRs by far predate the first plants, and that TR appearance is an ongoing process with similar rates across the plant kingdom. Interestingly, the few detected highly mutable TRs might provide a source of variation for rapid adaptation. In particular, such TRs are enriched in leucine-rich repeats (LRRs) commonly found in R genes, where TR unit gain/loss may facilitate resistance to emerging pathogens.


Asunto(s)
Proteínas de Plantas/genética , Plantas/genética , Proteoma , Secuencias Repetidas en Tándem/genética , Evolución Molecular , Filogenia , Plantas/metabolismo
9.
Mol Biol Evol ; 31(5): 1132-48, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24497029

RESUMEN

Tandem repeats (TRs) are a major element of protein sequences in all domains of life. They are particularly abundant in mammals, where by conservative estimates one in three proteins contain a TR. High generation-scale duplication and deletion rates were reported for nucleic TR units. However, it is not known whether protein TR units can also be frequently lost or gained providing a source of variation for rapid adaptation of protein function, or alternatively, tend to have conserved TR unit configurations over long evolutionary times. To obtain a systematic picture, we performed a proteome-wide analysis of the mode of evolution for human protein TRs. For this purpose, we propose a novel method for the detection of orthologous TRs based on circular profile hidden Markov models. For all detected TRs, we reconstructed bispecies TR unit phylogenies across 61 eukaryotes ranging from human to yeast. Moreover, we performed additional analyses to correlate functional and structural annotations of human TRs with their mode of evolution. Surprisingly, we find that the vast majority of human TRs are ancient, with TR unit number and order preserved intact since distant speciation events. For example, ≥ 61% of all human TRs have been strongly conserved at least since the root of all mammals, approximately 300 Ma. Further, we find no human protein TR that shows evidence for strong recent duplications and deletions. The results are in contrast to the high generation-scale mutability of nucleic TRs. Presumably, most protein TRs fold into stable and conserved structures that are indispensable for the function of the TR-containing protein. All of our data and results are available for download from http://www.atgc-montpellier.fr/TRE.


Asunto(s)
Eucariontes/química , Eucariontes/genética , Evolución Molecular , Proteínas/química , Proteínas/genética , Secuencias Repetidas en Tándem , Sustitución de Aminoácidos , Animales , Secuencia Conservada , Exones , Genoma Humano , Humanos , Cadenas de Markov , Modelos Genéticos , Filogenia , Proteoma/química , Proteoma/genética , Factores de Tiempo
10.
Nucleic Acids Res ; 40(20): 10005-17, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22923522

RESUMEN

Tandem repeats (TRs) represent one of the most prevalent features of genomic sequences. Due to their abundance and functional significance, a plethora of detection tools has been devised over the last two decades. Despite the longstanding interest, TR detection is still not resolved. Our large-scale tests reveal that current detectors produce different, often nonoverlapping inferences, reflecting characteristics of the underlying algorithms rather than the true distribution of TRs in genomic data. Our simulations show that the power of detecting TRs depends on the degree of their divergence, and repeat characteristics such as the length of the minimal repeat unit and their number in tandem. To reconcile the diverse predictions of current algorithms, we propose and evaluate several statistical criteria for measuring the quality of predicted repeat units. In particular, we propose a model-based phylogenetic classifier, entailing a maximum-likelihood estimation of the repeat divergence. Applied in conjunction with the state of the art detectors, our statistical classification scheme for inferred repeats allows to filter out false-positive predictions. Since different algorithms appear to specialize at predicting TRs with certain properties, we advise applying multiple detectors with subsequent filtering to obtain the most complete set of genuine repeats.


Asunto(s)
Modelos Estadísticos , Secuencias Repetitivas de Aminoácido , Análisis de Secuencia de ADN , Secuencias Repetidas en Tándem , Algoritmos , Genómica/métodos , Humanos , Funciones de Verosimilitud , Filogenia , Análisis de Secuencia de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...